Ruppert Matrix as Subresultant Mapping
نویسنده
چکیده
منابع مشابه
Recursive Polynomial Remainder Sequence and the Nested Subresultants
Abstract. We give two new expressions of subresultants, nested subresultant and reduced nested subresultant, for the recursive polynomial remainder sequence (PRS) which has been introduced by the author. The reduced nested subresultant reduces the size of the subresultant matrix drastically compared with the recursive subresultant proposed by the authors before, hence it is much more useful for...
متن کاملSolving over-determined systems by the subresultant method (with an appendix by Marc Chardin)
A general subresultant method is introduced to compute elements of a given ideal with few terms and bounded coefficients. This subresultant method is applied to solve over-determined polynomial systems by either finding a triangular representation of the solution set or by reducing the problem to eigenvalue computation. One of the ingredients of the subresultant method is the computation of a m...
متن کاملMultivariate subresultants using Jouanolou’s resultant matrices
Earlier results expressing multivariate subresultants as ratios of two subdeterminants of the Macaulay matrix are extended to Jouanolou’s resultant matrices. These matrix constructions are generalizations of the classical Macaulay matrices and involve matrices of significantly smaller size. Equivalence of the various subresultant constructions is proved. The resulting subresultant method improv...
متن کاملMatrix computation of subresultant polynomial remainder sequences in integral domains
We present an impr{wed variant of the matrix-triangularization subresultant prs method [1] fi~r the computation of a greatest comnum divi~w of two polynomials A and B (of degrees m and n, respectively) along with their polynomial remainder ~quence. It is impr~wed in the sense that we obtain complete theoretical results, independent {}f Van Vleck's theorem [13] (which is not always tnle [2, 6]),...
متن کاملRecursive Polynomial Remainder Sequence and its Subresultants
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” along with investigation of their properties. A recursive PRS is defined as, if there exists the GCD (greatest common divisor) of initial polynomials, a sequence of PRSs calculated “recursively” for the GCD and its derivative until a constant is derived, and recursive subresultants are defined...
متن کامل